
Project NoCap: Fact Checking with AI

Team members:
Anthony Ciero: aciero2022@my.fit.edu
Thomas Chamberlain: tchamberlain2023@my.fit.edu
Varun Doddapaneni: vdoddapaneni2023@my.fit.edu
Joshua Pechan: jpechan2023@my.fit.edu

Faculty advisor: Professor Silaghi: msilaghi@fit.edu

Clients:

●​ Students / teachers
●​ Citizens
●​ Journalists

Date of Client Meeting: TBD

Goal and Motivation:
​ The goal of this project is to allow clients to easily be able to fact check articles,
also aiming to utilize a chrome extension that reads the current webpage and provides
feedback on truth and manipulation. Currently to accurately fact check a website, there
are sites you can go to and input some text and it will provide whether it is fact or fiction,
however this requires effort that many do not want to go through and may not know
about. This method can also be cumbersome leading to many not bothering to fact
check. Our extension aims to streamline this process allowing for easy fact and bias
checking as well as a graphical representation of the language used.

Approach:
​ Our application should give the user a bias rating for an article or a block of text
that they wish to be evaluated. The user can either use the website, or a chrome
extension that readily evaluates a source once opened. The rating should reflect the
type of language a text uses, and the context in which they are put in. The application
makes use of Natural Language Processing (NLP) via a prebuilt AI model to evaluate
the language of a text. These ratings will also have a breakdown using Python’s
LangGraph module.
​ Our application will also have aggregate rankings for specific publications. When
a user wants to evaluate a source, the ranking for that article will be taken and put into
the aggregate ranking for that particular publication (ex: CNN or BBC). All the
publications we rank will be visible on the main website, and will update every time new
articles are added. The rankings of these publications will be represented graphically, as
well as having a table listing publication rankings from high to low.​

The application also includes a Google Chrome extension. This is for
accessibility and ease of use purposes. The user can open the extension on any
website containing a text they want to analyze, and the extension will readily break it
down and rate it. The extension will serve as a more accessible, thin version of the main
application.

mailto:aciero2022@my.fit.edu
mailto:vdoddapaneni2023@my.fit.edu
mailto:jpechan2023@my.fit.edu
mailto:msilaghi@fit.edu

Novel Features/Functionalities:
One novel feature incorporated into our project is the use of graphical

representations. Specifically graphical representations to break down the article and
return a misinformation rating and back it up with charts of specific keywords used.
These graphs essentially explain the reasoning behind why we reached the rating we
did.

Another novel feature would be to reach Web Content Accessibility Guidelines
(WCAG) on the AA level. This means that people with most disabilities can access the
application with little trouble. This includes being able to tab between buttons, having
accessible color contrast, and text that is easy to read and understand. Making the tool
inclusive for a wider audience.

Algorithms and Tools:

Some potentially useful tools for the system include:

●​ Python (backend): primary server-side language for AI orchestration and
services.

●​ FastAPI (API/backend web framework): lightweight, async-friendly framework
to expose REST endpoints.

●​ LangChain & LangGraph (LLM/NLP modules): tooling to compose prompts,
retrieval, multi-step AI workflows, and data visualization.

●​ React (JavaScript UI): component-based interface for the extension popup and
web dashboard.

●​ AWS Bedrock (Nova Lite): managed LLMs with model swapability for
classification and analysis tasks.

●​ AWS Amplify (GraphQL with AppSync + DynamoDB): optional persistence
layer for user preferences, cached verdicts, and analytics.

Some potentially useful algorithms for the system include:

●​ Custom ranking logic: order evidence by credibility, recency, and cross-source
agreement.

●​ Claim detection & classification: identify factual statements and label them for
verification.

●​ Prompting strategies: structured prompts/templates for reliable, explainable
outputs.

Some potentially useful integrations:

●​ GitHub: code hosting, version history, issues/PRs, and permissions.
●​ Search/Fact-check APIs: e.g., Google Programmable Search, FactCheck.org

datasets, or other evidence sources.

Technical Challenges:
One technical challenge would be to learn whatever algorithm/tool that we pick to

progress the project. Not everybody in the group knows every tool that we will

https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://accessibleweb.com/rating/aa/

potentially use so we would have to learn these tools on a surface level to be able to
implement them into our project. Whatever part of the project is assigned to the
members, we would all have to invest time and effort into learning the tools.

Another technical challenge for our group is that we all have stronger
backgrounds with backend development rather than frontend design. This could make it
more difficult to implement Web Content Accessibility Guidelines on the AA level,
accessible layouts, and responsive graphical components. As a result, we will need to
dedicate extra time to learning frontend frameworks to ensure the final product meets
desired standards.

Another technical challenge is the limited knowledge in LangChain and
LangGraph. The learning curve may slow down progress as both of these are central for
managing prompts and reasoning chains in large language models. The plan to
overcome this is to start small with prototype experiments before fully implementing it
into our project.

An additional technical challenge is to establish an external connection to a site
for the AI chatbot integration which the team has limited experience with. This would
include managing API calls and handling authentication securely. Additionally we would
need to account for potential rate limits.

Design:

●​ 3 Main Pages
○​ Home: The Home Page is the default starting page when the website is

opened, allowing the user to paste a desired article or block of text that
they wish to fact check.

○​ Report: The Report Page is the page that comes up after a user enters
their desired article or selects a stored article from the Database Page. It
shows information about the article like title, author, publisher, and the
URL. After, it shows the authenticity score of the article followed by a
summary of why the AI rated the article this way and a detailed
explanation of what it believed to be fact or fiction.

○​ Database: The Database Page is where all authenticated articles are
stored for users to search through. These articles are stored in publisher
cards that show the publisher's name as well as aggregate authenticity
score of articles. The articles are stored in their own cards showing
authenticity score on the right side and article title, author, publication
date, and URL. The authenticity scores are color-coded, with green,
yellow, or red depending on score.

Evaluation:

●​ Speed: ensure that article reports are created within 30 seconds
●​ Accuracy: Currently our model will give a wide range of authenticity scores for

the same article. Our goal is to concise this down as much as possible.
●​ User Survey: Conduct user surveys on specific parts of our software like creating

an article report, searching/filtering for an article in our database, (e.g. rating of
1-5 on each of the different features)

Progress Summary:

Model/Feature Completion % To Do

Frontend 80% Add example articles to home page, connect
article data via input on Home Page

Database 75% Connect to frontend article input to save in
database

AI Model 100% Connected to AI model allowing score and report
generation

Prompt Engineering 75% Improve prompt to yield better/more reliable
score.

Chrome Extension 0% One of main goals for semester 2

Milestone 4: Model Improvements, Chrome Extension, and Branding

●​ Prompt Engineering
●​ Improve model output
●​ Show default home page cards
●​ Article data connection to report page via input
●​ Create logo and branding
●​ Chrome extension

Milestone 5: Continue + Evaluation/Poster

●​ Finalize prompt engineering
●​ Ensure consistent model output
●​ Create graphs/visualizations for collected data
●​ Conduct evaluation and analyze results
●​ Create poster for Senior Design Showcase

Milestone 6:

●​ Finalize data graphs/visualizations
●​ Test/demo of the entire system
●​ Conduct evaluation and analyze results
●​ Create user/developer manual
●​ Create demo video

Task Matrix for Milestone 4:

Task Thomas Anthony Josh Varun

1. Prompt Engineering 0% 0% 50% 50%

2. Improve model output 0% 0% 50% 50%

3. Show default home
page cards

50% 50% 0% 0%

4. Article data
connection to report
page via input

30% 0% 0% 70%

5. Create logo and
branding

50% 50% 0% 0%

6. Chrome extension 50% 50% 0% 0%

Approval from Faculty Advisor:
"I have discussed with the team and approve this project plan. I will evaluate the
progress and assign a grade for each of the three milestones."
Signature: _______________________________ Date: ________

